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Abstract

Compressible laminar and incompressible laminar
and turbulent flows are investigated for three
swept wings with infinite aspect ratio at various
Reynolds numbers. The predictions obtained by
finite—difference integration of the boundary-layer
equations are compared with experimental data for
a pressure distribution of the NACA Profile 631—
012 at zero angle of attack and with the NLLR mea-
surements on an infinite swept wing. Three closure
assumptions have been tested in comparison calcu-
lations. Second- and fourth-order accurate solu-
tions show that laminar flows can be calculated
without difficulty up to separation. For turbulent
flows the closure assumptions fail near separa-
tion when large cross flows are present.

1. Introduction

Future design of aircraft will rely more heavily on
prediction methods than was possible in the past.
Pressure distributions will to a greater extend be
determined from direct integration of the Euler
equations as skin friction coefficients will be ob-
tained from integration of Prandtl's boundary-
layer equations for three-dimensional flows. This
is of importance since control of the boundary
layer on wings and other wetted surfaces of the
airplane can result in substantial drag reduction.
However, before such predictions become possible,
more powerful methods of analysis than those pre-
sently in use will have to be developed. Some of
the goals which can be reached in the near future
were recently described in |: I]. Restricting the
consideration to viscous flows over lifting sur-
faces in particular one can identify two major
problem areas where future research should con-
centrate on. One problem consists in providing

a more accurate description of viscous flow ef-
Tects in optimization procedures for lift and drag;
the other problem concerns the control of the
boundary layer to such a degree that a large
portion of the flow can be maintained taminar.
According to |: I] a laminar-flow controlled air-
plane would result in ten to twenty percent lower
direct operating costs in comparison to the "tur-
bulent!" design.

As far as the optimization problem is concerned
the techniques presently used have reached a high
degree of perfection . Their major shortcoming is,
however, that most of the methods are completely
based on potential flow analysis and fully ignore
the flow displacement through boundary layers on
the whole, not to mention their transition and se-
paration.
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Another problem of equal difficulty is the prediction
of turbulent boundary layers in three-dimensional
flows. In them the mechanism of momentum ex-
change in three dimensions is not fully understood.
Recent research on this subject has brought some
improvement of the mathematical techniques of the
prediction methods; however, because of lack of ex -
perimental data models which describe the momentum
exchange in three-dimensions reliably have not been
developed so far. Instead, all models presently
being used are extensions of those developed for
two~dimensional flows, no matter whether integral-
[ 2] or finite-difference techniques [ 3] are con-
sidered. It may therefore be possible to predict
small cross~flows, in agreement with experimental
data, but in flows with large lateral deviations
(Refs. [ 4] and [ 5]) the Reynolds stresses need not
be the same for the two tangential directions and
can therefore not be predicted in this manner. A
first attempt to adjust a model for the eddy viscosity
to the cross—-flow was made in [6] . Therein an ob=
servation of Ref. [ 4] was applied in a calculation to
predict the measurements of [5] . No general con-
clusion can however, be drawn from the results, as
for example all other calculations in [6] were
carried out with an isotropic eddy viscosity.

An isotropic eddy viscosity was also used in Ref.
[7] . Therein Adams computed the boundary layer
on a swept wing with infinite aspect ratio as in-
vestigated experimentally by Altman and Hayter

in Ref. [ 8].

- Attempts have been made (Refs.[ 9] and [ 10])to
adapt the law of the wall to three-dimensional flows.
These modifications improve in one case (Ref.[ 9])
the accuracy of the prediction but do not contri-
bute to a more general formulation for the turbu-—
lent transport mechanism in the outer part of the
boundary layer.

This paper sets out to demonstrate the applica-
tion of a soluton recently developed for general
three-dimensional boundary layers [ 11], here
adapted to infinite—swept conditions. First
compressible laminar flows over a wing are ana-
lysed downstream from the leading edge. Then the
experimental data of [ 5] and [ 8] are recalculat-
ed with three scalar formulations for the eddy vis—
cosity. In the comparison of the results second-
and fourth-order finite-difference approximations
are shown to have a noticable effect on the accura-
cy of the prediction, which could easily be attri-
buted to inadequacies of the physical models
adopted.
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2. Boundary-i_ayer Eguations for Infinite~=Swept
Wing Conditions

In the present investigation the surface of the wing
is assumed to be flat in a first approximation and
all curvature effects are neglected. The governing
equations are then valid only for a boundary sheet
in which the pressure remains constant in the di-
rection normal to the surface of the wall. Let x,y,
2z be Cartesian coordinates, x and y being mea-
sured normal and parallel to the leading edge in
the plane of the wing and z normal to it; the cor—
responding velocity components are u,v, and w.
For an infinite aspect ratio all derivatives in the

y-direction vanish identically in the governing
equations. The continuity equation may then be

written [ 11] in the following form:

3
3 x

(ou) + 52 (W) = 0 (2.1)
Because of the parabolic nature of the two momen-
tum equations and the energy equation a vector
form combining all three equations can be intro-
duced

2
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Although conservative formulation is often pre-
ferred, equation (2. 2) is given in nhon-conserva-—
tive form. At the present time not enough informa-
tion is available to justify a alternative form of
equation (2. 2). The quantity F is a column vector
with components u, v, and the stagnation enthalpy

hg. The coefficient matrices are defined as follows
A1=g1l, g, =pu (2. 3)
where | is the identity matrix of order three. The

matrices Az and A3 consist again of a factor and
a matrix, which in special cases reduces to the
identity matrix. The factors are defined as

(2. 4)

g, = Dw—g—z[u(1+cx)]

2

g, =-u(l+¢ )
X

4 (2. 5)

The last two equations allow for an extension of
the solution to turbulent flows. The quantity €,
stands for the ratio of the apparent stresses and
the Stokes stresses in the x-direction, and a simi=-
lar expression e,, can be defined for the direction
parallel to the leading edge.

E == ol VYal /v v ¢
x /zx’

=—ov'w'/1-Zy (2. 6)

For compressible flows, the heat flux due to turbu-
lent transport may be expressed in the same form

= It
K pwW hs/qZ (2.7)

With equations (2. 4) ~ (2. 7) the matrices A2 and
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A3 can be written as

i 0 0
= 0 1+ 0 .8
A, =9, e s (2. 8)
+
0 o T+e, .
1 0 0
= 0 1+ .9
A3 94 1832 0 (2.9)
+
0 o0 +e .

The excentricities ejj are determined from the
difference of the apparent stresses and the ratio

of the turbulent and the molecular heat flux coeffi-
cient:

€2~ 7 ;12—3—32 3,95 @0l
€23 © ;12_—332_(63393) =
e32=+—g-3L(ex— e ) (2.1‘2)
ey =" ;“;——U—;;—) -1 (2.13)

The inver se of the negative value of the first term
in equation (2.13) is often referred to as turbulent
Prandt! number. All excentricities vanish, if €
and ¢, , are equal and if the turbulent and the mole-
cular Prandt| number are equal to unity. The vec-
tor B in equation (2. 2) is defined through the
pressure gradient and the sum of the r est of the
heat flux term and the dissipation function.

P
I x
B=|lo
1 3 u2 avz
a | _u’ ¢ AV \ 14
= 3 Top lg5leg5 (T ) legy - o)) =0
(2. 14)

For the solution of equation (2. 2) initial and bound—
ary conditions have to be prescribed. The initial
conditions can easily be generated since equation
(2. 2) reduces to an ordinary differential equation
for the stagnation or attachment |line at the |leading
edge. Integration of the resulting equation may be
facilitated by finite-difference or Rung e-Kutta
procedures.

The boundary conditions for equation (2. 2)are the
usual zero-slip condition at the wall and the outer
edge condition;

lim
Flx,y,0) =0; _, F=F_(xy) (2. 15)
Aside from the boundary conditions, which can

either be provided from potential flow analysis or

experiments, cfosure assumptions must be intro-—



duced to define the functions ez, and e33 if turbu-
lent flows are considered. Despite considerable
experimental efforts during recent years little or
no 'information exists, from which expressions can
be derived for € and e . The data presented
for example, in Ref. [ 4] are of inadequate accur-
acy and do not encourage one to attempt a corre-
lation. For this reason, the exchange coefficients
€, and e, Will be assumed to be scalars for
turbulent flow calculations. This assumption must
be considered very critically as the available
models are all extensions of those derived for two-
dimensional flows. Despite some successful pre-
dictions general conclusions cannot be drawn from
any of the cailculations published so far. Since
the limitations of the various models are unknown,
three of them will simultaneously be incorporated
in the integration for turbulent flows: The follow-
ing models, which all are based on the scalar
assumption € = ¢ x = €, were chosen; Michel'!s
version of the mixing length approximation [ 12] 3
according to which the mixing length | is deter-
mined from the equation

( K z

)

1
— =0.08
5 0.085th 0.085 6

(2. 16)
where K is von Karman's constant (K = 0. 4).

The mixing length | is inserted in the van Driest
damping factor

1/2]’

F=1-exp[- (1p) (2.17)

26K 1
and finally € results from Prandtl!s approxima-
tion as
22 .3u2  av. 2 1/2

e H iy +(5,) ] /v (2. 18)
Another expression for the mixing length is intro-
duced by Pletcher in [ 13] . While equation (2. 16)
defines the mixing length for the entire boundary-
layer thickness three different approximations are
used in Pletcher's polynomial curve fit of ex-
perimental data:

K[ 1 -exp (—z+/26)] (z/8); 0<z/ 6 <0,1 (2.19)

i [1-~exp (—z+/26)] (z/6 )
-1.53506(z/ 8 -0. 1)2 + 2.75625(z/ 8 -0. 1)3

4
-1.88425(z/ 6§ -0.1) ;0.1<2/6<0,6

lT=o.0t39, 0.6<2/8
2 Ju.2 9 u 1/2

2L AR e el e AR
In the outer portion of the boundary layer | is
assumed to be constant. The coordinate z* is de-
fined in terms of the friction velocity

+ 1/2

A= (Ut /ol o e (e /p)/ (2. 20)

A third modification is presently employed in Ref.
[6] . In this approximation € is given by an inner
and outer law of the form

e = oKz[ 1 —exp(-z" /26)] 2[ o)+ (%)2]

1/2 5
i 2 3 2

/u
o =DK1V66* Y /u (2.21)
In equation (2. 21)the friction velocity is adjusted
to pressure gradient flows. Equation (2. 20) must
then also include the pressure gradient in the x-
direction. This approximation has been used in
Ref.[ 3]. The displacement thickness 8% must be
evaluated from both velocity components. In Ref.
[6] it was recently suggested that the two-dimen-—
sional value should be a reasonable approximation
also for three-dimensional flows., The effect of
this approximation will be demonstrated later in a
sample calculation. The value of the constant K1 is
0. 0168 and the intermittancy factor y is deter-
mined from

y =[1+ 5.5(z/ 5)6] o (2.22)
The models given in the equations above all repre-
sent first-order closure relations. They clearly
cannot take into account the variation of the ex-—
change coefficients in the two coordinate direct—
ions but represent a mean value. Such a simplifi-
cation is not justified for flows with strong pressure
gradients near separation and all mode Is are ex—
pected to fail in the vicinity of the separation point.
Before the results obtained from the integration

of equation (2. 2) are presented the method of inte—
gration will briefly be outlined.

3. Comments on the Method of Integration

The integration of equation (2. 2) can be facilitated
through finite~difference approximations for lami-
nar and turbulent flows. This does not mean, as is
frequently claimed, that transition can be predicted.
Although several empirically determined trans-
ition parameter have recently been evaluated for
infinite swept wings [ 14] , the validity and the
range of application of these parameters has not
_been established., For the solution of the govern-
ing equations the position of the transition point
must therefore be assumed. The finite-difference
solution used in the present investigation is an
adaption of the solution of Ref.[ 15] and [ 16] to in-
finite swept wing conditions. The ma jor details

are described in Ref.[ 11].

For laminar flows there are, in general, no major
difficulties in the integration since all derivatives
are, indeed, of order unity and reliable error
bounds can be obtained by an order of magnitude
analysis of the truncation errors., Although the
governing equations are non-linear, local lineari-
sation is preferably employed to construct |inear
implicit difference equations, which, in general,
allow a step size of about one order of magnitude
larger than explicit difference equations. Reduc- .
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tion of equation (2.2) to a first-order system Is
possible and has been done in Ref.[ 17]. In the
present analysis the original second-order equa-
tion is retained since it immediately leads to dif~-
ference equations which have a tridiagonal matrix
structure., The simultaneous solution of the N
difference equations can be avoided by employing
the well-known recursion relations for such ma-
trices and the construction of an efficient algo-
rithm is rather simple.

It was noted in [ 11] that in turbulent flows be-
cause of large velocity gradients near the wall and
because of extremely large gradients of the appar-
ent turbulent viscosity considerable numerical
errors may result in the integration. Most of the
available integration schemes have an overall
error of order two and for acceptable numerical
errors the step sizes must be taken rather small.
The analysis of the errors is not simple as they
arise from different sources. The major error
sources are: The order of the truncation error,
the magnitude of the three step sizes A x, Ay,
and Az; the error for the iteration process for
the normal velocity component; the error with
which the outer edge conditions are approximated;
the accuracy of the finite~difference approxima-
tion of first- and second-order derivatives of the
velocity components at the wall. At the present
time the step sizes can only be chosen according
to experience. This does not impose difficulties
for laminar flows, although a method which enab-
les the determination of the proper step size would
be most desirable. In the same way error bounds
for the iteration process and the outer edge con-
dition are difficult to estimate. The error bound
for the outer edge conditions may cause signifi-
cant changes in the magnitude of the maximum
value of the apparent viscosity [ 16]. Thereby a
substantial falsification of all flow quantities ob-
tained through the integration procedure chosen
may result. This purely numerical error can easi-
ly be attributed to the model adopted for the turbu-
lent shear stresses and may lead to wrong con-
clusions.

It is often believed that by telescoping the grid,
the accuracy of the solution can be improved. This
conclusion is only correct if the problem contains
one dependent variable so that the location of the
extrema of the function and of the higher-order
derivatives can be located. Then by adjusting the
step size, a consistent accuracy or overall error
may be obtained. This approach can not be re-
commended when the problem contains more than
one dependent variables as for example in turbu-
lent boundary layers. The gradient of the tangen-
tial velocity components attain their maximum
values at the surface while the apparent viscosity
approaches its maximum somewhere in the bound-
ary layer; the gradient 3p / 3z can be very large
on both sides of the maximum so that telescoping
the grid near the wall {because of the large velo-
city gradients) would even enlarge the truncation
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errors in the field. Another example can be given
for compressible boundary layers. For constant
wall temperatures, the static temperature reaches
its maximum value, again, some distance away
from the wall. For high Mach-numbers the grad-
ients tend to be steep, which in turn may cause
large higer order derivatives. Again, telescoping
near the wall and stretching the grid near the outer
edge will not improve the accuracy of the solution.
In [ 11] a simple method was tested successfully
to overcome the difficulties just described. The
three components of equation (2. 2) are divided by
g3 so that in equation {2.10) and (2. 11) the deriva-
tives of 93 with respect to z can be replaced by
the derivatives of the logarithms. The evaluation of
Ings increases the calculation time per grid point,
but the accuracy is considerably improved as was
shown in Ref.[ 11]: In a sample calculation the
error remained almost constant while the number
of grid po ints was reduced by a factor ef eight.
The corresponding step sizes were Az =0.025
and o. 2.

Another means of improving the accuracy of the
solution c onsists in reducing the overall trunca-
tion error from second to fourth order. This can
be done with relatively little effort for the direct-
ion normal to the wall as was shown in [18] . By
using Taylor-series representation for the first
and secon d-order derivatives, three-point finite—
difference equations of fourth order can be ob-
tained. The overall increase of program state-
ments is about ten percent. Although the algorithm
can be constructed ~ as for the second-order so-
lution — w ith three net points, it must be pointed
out that the calculation-of the coefficients 9o Pe-
quires five net points., The reduction of the trun-
cation error has been a valuable tool in testing
the numerical accuracy of the solution, since it
can be evaluated with the recursion relations of
the second-order solution; by comparing the latter
with the former the effect of humerical errors can
be studied, as will be shown later. Such an ana-
lysis is of particular interest for turbulent flows.

The last point to be mentioned concerns the evalu-
ation of the shearing stress at the wall. Several
investigations rely on an evaluation of T, which

is based on three to five grid points. If the net
spacing is sufficiently small, such end-point formu-
las may be justified. In turbulent flows, particul~
arly for large net spacings a better approximation
for T may be derived, if it is assumed that the
shearing stress is constant for the first step of
integration at the wall. An improvement of as much
as twenty percent has been observed in test calcu-
lations [ 11]. This assumption actually is in con-
sistent with the development of fourth-order finite-
difference representation, but may be replaced by
consistently employing the compatibility conditions
at the wal | to the required degree of accuracy.
Further details of the solution may be found in

Ref.[ 11]. Although fully three-dimensional



flows require a more complicated program logic,
extension of the solution for equation (2. 2) is
straight forward. However, as was pointed out in
[ 19] stable solutionscan only be obtained if the
Courant-Friedrichs-Levy condition is satisfied for
the subcharacteristics, which for three-dimen-
sional boundary layers are given by the projections
of the stream-lines on planes parallel to the sur-
face. In the next section some flow field analysis
of viscous flows over infinite swept wings, as ob-
tained in the present investigation, will be de-
scribed.

4, Boundary-l_ayer Predictions for Infinite Swept
Wing Conditions

Several boundary-layer flows over swept wings

of infinite aspect ratio have been analysed with the
method of solution described in the preceeding sec—
tions. For the first example the following flow con-
ditions were chosen. A laminar boundary layer

in a free-stream with Mach numbers Mg = 0. 649,
0.749 and 1.298and a Reynolds number of approxi-
mately 3+10°. The sweep angle ¢ of the wing was
assumed to be zero for the first Mach number, 30°
for the second, and 60° for the third. The pressure
distribution was determined experimentaliy for the
upper surface of the wing in [ 20]. In all three
cases considered supersonic flow exists and ex-
tends over 20 percent of the chord, where a shock
can be identified. The pressure coefficient is
depicted in the upper part of Fig. 1.

The boundary layer characteristics were deter-
tained by an adapted version of the solution for
fully three-dimensional flows of [ 21]. T he mo-
dification of the solution was carried out by Dr.
E. H. Hirschel of the DFVL R-Institut fir Ange-
wandte Gasdynamik, He also provided the data
shown in Fig.1 . The skin-friction coefficient
as obtained from this solution (Fig., 1) attains
a maximum a short distance downstream from
the stagnation line. it is noted that for ¢ = 0°
the maximum is about two and on half times
higher than for ¢ = 60°, Separation is observed
at about 20 percent of the chord. Considerable
flow deflection in the boundary layer takes place
near the maximum of the shearing stress. For

P = 600, the direction of the limiting stream—
lines near the wall deviates by some 20° from
that of the e xternal flow{lower part of Fig. 1).

The second flow is an incompressible one which
was investigated experimentally by Altman and
Hayter [ 8] already in 1951 and more recently
by Adams [ 7], who developed a second-order
finite-difference solution for infinite-swept wing
conditions. The pressure distribution is that of
the NACA 631-012 section airfoil at zero angle
of attack. In the experiments transition was
artificially enforced at 20 percent of the chord
for a Reynolds number of 5, 4- 108 , zero lift
conditions and a sweep angle of ¢ = 45° The
skin friction coefficients as calculated with the
present solution are shown in Fig. 2.
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Fig. 1: Pressure-, skin-friction coefficient and

flow turning angle in a laminar compressi-
ble boundary layer on the upper surface
of a swept wing with infinite aspect ratio.
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gether with the closure-relations equations(2. 18)
and(2. 19}. Both models yield almost the same
results except for a short distance downstream
from the point where transition was enforced.

In Fig. 3 the displacement thickness 6% and
momentum thickness © as calculated with the



solution of Ref. | 7] and the second-order solution
presented in the foregoing sections are compared
with the experimental data. The data shown in this
Fig. correspond to those shown in Fig. 2.

Re = 5.4-10°
NACA 63,-012
0004 =0 |
67/L 5/L
EXPERIMENTS REF 8 e
0002 = I S
£Q.219,20.
ah Eo.2.1e,2o.7°j s / |5
0002 7 =
FULLY TURBULENT /
b e/L
pu—
% 02 04 06 08 10
X/C

Fig. 3: Comparison of measured displacement and
momentum thickness of Ref.[B]with pre-
dictions of Ref, [7] and of present second-
order solution,

Deviations from the measured data can be noted
immediately downstream from the transition point,
but otherwise the accuracy of all three predictions
is acceptable. The closure assumption used in
Ref.[ 7] is almost identical to that of equation

(2. 21): Instead of the wall-shearing stress the
local value is inserted in the van Driest damping
factor but the pressure gradient is neglected. In
both calculations the displacement thickness and
the momentum thickness are evaluated for the x~
component alone. The small deviations in the pre-
dictions are due to the differences in the closure
assumptions and can also be noted in the velocity
profiles (Fig. 4). At 50 percent chord the pre-
dictions obtained with the closure assumptions

(2. 18) and (2. 19) show slightly fuller velocity
profiles than those of Ref.[ 7]. Further down-
stream at x/c = 0.6 all three predictions give
virtually the same values; moreover, the agree-
ment with the measurements is indeed good but not
surprising since the pressure gradient is very
small. The exchange coefficients are then at

least approximately the same and the scalar
assumption for € is justified. On the other hand,
the comparison in Fig. 4 does not confirm the
validity of the three closure assumptions for
three-dimensional but at most for two—-dimensio-
nal boundary layers. Since the pressure gradient
in the y—direction vanishes identically and is small
in the x—direction the flow deviates only little
from constant pressure conditions in the vicinity
of 50 to 60 percent of the chord. Truely three-
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Fig. 4: Comparison of measured velocity profiles
of Ref.[B]with predictions of Ref.[?]and of
present second-order solution.

dimensional effects can therefore only be small
as the projections of the local velocity vector on
the plane of the surface of the wing are co-linear
with that of the local turbulent shearing stress.

Large pressure gradients in the x—-direction were
enforced by van den Berg and Elsenaar in their
experiment on an infinite swept wing,[ 5] . Their
flow conditions have been studied extensively with
the present solution, The oncoming flow of the
free-stream is incompressible with a Reynolds
number of about 3.1-° 106. The sweep angle is

35° and the pressure gradient is negative and
large enough to lead to separation. W, Kordulla

of the Aerodynamische Institut has carried out
calculations in which all three closure assumptions,
equations (2.18), (2.19), and (2. 21) were employed.
Both, second- and fourth-order algorithms were
used. Thereby the numerical accuracy of the pre-
dictions could be determined for each closure
assumption,

The range of predictions of the present solution
is shown for the shearing stress in the upper
part of Fig. 5. Although the agreement is fair
downstream from the leading edge of the wing, the
predictions fail near separation because of the
scalar-assumptions introduced in the exchange
coefficients. The details of the calculation are
shown in the middle of Fig. 5. It is seen that the
inclusion of the pressure gradient in the closure
assumption (2. 21) gives better agreement than
equations (2. 18) and (2. 19) which are based on
the wall shearing stress alone. It is of importance
to point to purely numerical errors. Each calcu-
lation was carried out with second-order (2.0)
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Fig. 5: Comparison of measured skin-friction
coefficients with predictions of present
second- and fourth—order solution. The
curve which ends at point 8 is the pre-
diction of Ref.[ 10]. The dashed lines give
the skin-friction for 6 based on the u-
component of the velocity.

and fourth-order (4.0) truncation errors and sub-
stantial differences can be noted. These results
should make clear that great care must be ex-
ercised in the numerical integration of the bound-
ary-layer equations for turbulent flows. The curve
which ends at measuring station 8 represents the
prediction of Ref.[ 10]. These values were ob~
tained after the law of the wall had been modified
[ 10] and adjusted to three-dimensional flows.

in the lower part of Fig. 5 the predictions ob-
tained with the closure assumption {(2.21) are re-
plotted for the second- and fourth-order solution.
The solid line gives the shearing stress for the
case when equation (2.21) is based on a displace-
ment thickness evaluated for both velocity compo-
nents. The dashed line gives the skin-friction co-
efficient for a displacement thickness based on the
u-component of the velocity alone. Although there
is agreement with the experimental data for the
second-order solution, there is no justification

of adopting the displacement thickness of the u-
component for three-dimensional flows. The dif-
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ference caused by the two assumptions just men-—
tioned is substantial.and does not support the
simplifying assumptions of Ref. |: 6] . As the
computational effort for the evaluation of t he dis—
placement thickness of the three-dimensional
boundary layer is not much |arger than for the
two-dimensional one, 5" should not be evaluated
from the u—component alone.

The flow deflection as measured in the experiment
of Ref. [ 5] and calculated by the present solution
is shown in Fig. 6. Ag ain the assumption of
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Fig. 6: Calculated and measured (Ref. [ 5]) flow
deflection. Predictions are of pre sent
solution with second- and fourth-order
accuracy.

colinearity between local shearing stress and
the projection of the velocity vector is found
to be invalid.

A comparison of calculated and measured velo-
city profiles is given in Fig. 7. For the measur-
ing station 4 all six predictions fall almost to—
gether and are in acceptable agreement with the
experiment. It is seen that the difference between
second- and fourth-order solution is more pro-
nounced in the shearing stress than in the velo-
city profiles. Near separation the predicted ex-
change of momentum is seen to be much too large
for the x-direction. This is also indicated in
Fig. 8 where for the two measuring stations the
effective viscosities are plotted versus the co-

ordinate normal to the wall. Despite the large
deviations of equation (2.21) from (2. 18)

and (2. 19) the corresponding differences in
the velocity profiles are



small. For more accurate

Re £3.1.10°% J

predictions it is therefore
necessary to investigate
the closure assumptions
for three-dimensional flows
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anew and construct more
adequate formulations for
the outer part of the bound-
ary layer. Therein the
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vector characteristics of
the exchange coefficients
must be taken into account.
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Fig. 7: Measured and calculated velocity profiles. Measurements are of
Ref.[ 5]. Predictions of the present investigation.
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Fig. 8: Evaluation of closure assumptions for the
velocity profiles shown in Fig. 7.

193

5. Conclusions

Several compressible laminar and incompressible
turbulent boundary layers over infinite swept
wings have been investigated. The boundary-layer
equations were integrated with second and fourth -
order accuracy. For turbulent flows three closur e
assumptions were included in comparison calcu-
lations. The results show that incompressible as
well as compressible |laminar three-dimensional
boundary layers on wings can be predicted with—
out difficulty. The restriction to infinite aspect
ratio in the present investigation is of little im-
portance. Boundary layers on wings with finite
aspect ratio can be predicted with the same accur-
acy including large s uction and blowing rates.

For turbulent flows it is shown that all three
closure assumptions used in the present analysis
fail near separation. The main reason for this
failure is that in the outer part of the boundary
layer the predicted momentum exchange is much
too large and that the assumption of co-linearity
between local shearing stress and the projection
of the velocity vector on the plane of the surface
of the wing is invalid. Models which are based on
the displacement thic kness of the boundary layer
show a noticeable deviation if 6* is evaluated
with one velocity component only (two-dimensional
approximation).

Finally it is noted that substantial errors in the
predictions may result from the discretization



process.

These errors may invalidate or con-

siderably falsify the turbulence model adopted.
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